1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
// This file was generated by gir (https://github.com/gtk-rs/gir)
// from gir-files (https://github.com/gtk-rs/gir-files)
// from gst-gir-files (https://gitlab.freedesktop.org/gstreamer/gir-files-rs.git)
// DO NOT EDIT
use crate::{ffi, Object, Pad, ProxyPad};
use glib::{prelude::*, translate::*};
glib::wrapper! {
/// GhostPads are useful when organizing pipelines with [`Bin`][crate::Bin] like elements.
/// The idea here is to create hierarchical element graphs. The bin element
/// contains a sub-graph. Now one would like to treat the bin-element like any
/// other [`Element`][crate::Element]. This is where GhostPads come into play. A GhostPad acts as
/// a proxy for another pad. Thus the bin can have sink and source ghost-pads
/// that are associated with sink and source pads of the child elements.
///
/// If the target pad is known at creation time, [`with_target()`][Self::with_target()] is the
/// function to use to get a ghost-pad. Otherwise one can use [`new()`][Self::new()]
/// to create the ghost-pad and use [`GhostPadExt::set_target()`][crate::prelude::GhostPadExt::set_target()] to establish the
/// association later on.
///
/// Note that GhostPads add overhead to the data processing of a pipeline.
///
/// # Implements
///
/// [`GhostPadExt`][trait@crate::prelude::GhostPadExt], [`ProxyPadExt`][trait@crate::prelude::ProxyPadExt], [`PadExt`][trait@crate::prelude::PadExt], [`GstObjectExt`][trait@crate::prelude::GstObjectExt], [`trait@glib::ObjectExt`], [`ProxyPadExtManual`][trait@crate::prelude::ProxyPadExtManual], [`PadExtManual`][trait@crate::prelude::PadExtManual]
#[doc(alias = "GstGhostPad")]
pub struct GhostPad(Object<ffi::GstGhostPad, ffi::GstGhostPadClass>) @extends ProxyPad, Pad, Object;
match fn {
type_ => || ffi::gst_ghost_pad_get_type(),
}
}
impl GhostPad {
pub const NONE: Option<&'static GhostPad> = None;
}
unsafe impl Send for GhostPad {}
unsafe impl Sync for GhostPad {}
mod sealed {
pub trait Sealed {}
impl<T: super::IsA<super::GhostPad>> Sealed for T {}
}
/// Trait containing all [`struct@GhostPad`] methods.
///
/// # Implementors
///
/// [`GhostPad`][struct@crate::GhostPad]
pub trait GhostPadExt: IsA<GhostPad> + sealed::Sealed + 'static {
/// Get the target pad of `self`. Unref target pad after usage.
///
/// # Returns
///
/// the target [`Pad`][crate::Pad], can be
/// [`None`] if the ghostpad has no target set. Unref target pad after
/// usage.
#[doc(alias = "gst_ghost_pad_get_target")]
#[doc(alias = "get_target")]
fn target(&self) -> Option<Pad> {
unsafe {
from_glib_full(ffi::gst_ghost_pad_get_target(
self.as_ref().to_glib_none().0,
))
}
}
/// Set the new target of the ghostpad `self`. Any existing target
/// is unlinked and links to the new target are established. if `newtarget` is
/// [`None`] the target will be cleared.
/// ## `newtarget`
/// the new pad target
///
/// # Returns
///
/// [`true`] if the new target could be set. This function
/// can return [`false`] when the internal pads could not be linked.
#[doc(alias = "gst_ghost_pad_set_target")]
fn set_target(&self, newtarget: Option<&impl IsA<Pad>>) -> Result<(), glib::error::BoolError> {
unsafe {
glib::result_from_gboolean!(
ffi::gst_ghost_pad_set_target(
self.as_ref().to_glib_none().0,
newtarget.map(|p| p.as_ref()).to_glib_none().0
),
"Failed to set target"
)
}
}
}
impl<O: IsA<GhostPad>> GhostPadExt for O {}