Struct gstreamer_editing_services::Asset
source · #[repr(transparent)]pub struct Asset { /* private fields */ }
Expand description
A Asset
in the GStreamer Editing Services represents a resources
that can be used. In particular, any class that implements the
Extractable
interface may have some associated assets with a
corresponding property::Asset::extractable-type
, from which its objects can be
extracted using AssetExt::extract()
. Some examples would be
Clip
, Formatter
and TrackElement
.
All assets that are created within GES are stored in a cache; one per
each property::Asset::id
and property::Asset::extractable-type
pair. These assets can
be fetched, and initialized if they do not yet exist in the cache,
using request()
.
⚠️ The following code is in c ⚠️
GESAsset *effect_asset;
GESEffect *effect;
// You create an asset for an effect
effect_asset = ges_asset_request (GES_TYPE_EFFECT, "agingtv", NULL);
// And now you can extract an instance of GESEffect from that asset
effect = GES_EFFECT (ges_asset_extract (effect_asset));
The advantage of using assets, rather than simply creating the object
directly, is that the currently loaded resources can be listed with
ges_list_assets()
and displayed to an end user. For example, to show
which media files have been loaded, and a standard list of effects. In
fact, the GES library already creates assets for TransitionClip
and
Formatter
, which you can use to list all the available transition
types and supported formats.
The other advantage is that Asset
implements MetaContainer
, so
metadata can be set on the asset, with some subclasses automatically
creating this metadata on initiation.
For example, to display information about the supported formats, you could do the following:
GList *formatter_assets, *tmp;
// List all the transitions
formatter_assets = ges_list_assets (GES_TYPE_FORMATTER);
// Print some infos about the formatter GESAsset
for (tmp = formatter_assets; tmp; tmp = tmp->next) {
gst_print ("Name of the formatter: %s, file extension it produces: %s",
ges_meta_container_get_string (
GES_META_CONTAINER (tmp->data), GES_META_FORMATTER_NAME),
ges_meta_container_get_string (
GES_META_CONTAINER (tmp->data), GES_META_FORMATTER_EXTENSION));
}
g_list_free (transition_assets);
ID
Each asset is uniquely defined in the cache by its
property::Asset::extractable-type
and property::Asset::id
. Depending on the
property::Asset::extractable-type
, the property::Asset::id
can be used to parametrise
the creation of the object upon extraction. By default, a class that
implements Extractable
will only have a single associated asset,
with an property::Asset::id
set to the type name of its objects. However, this
is overwritten by some implementations, which allow a class to have
multiple associated assets. For example, for TransitionClip
the
property::Asset::id
will be a nickname of the property::TransitionClip::vtype
. You
should check the documentation for each extractable type to see if they
differ from the default.
Moreover, each property::Asset::extractable-type
may also associate itself
with a specific asset subclass. In such cases, when their asset is
requested, an asset of this subclass will be returned instead.
Managing
You can use a Project
to easily manage the assets of a
Timeline
.
Proxies
Some assets can (temporarily) act as the property::Asset::proxy
of another
asset. When the original asset is requested from the cache, the proxy
will be returned in its place. This can be useful if, say, you want
to substitute a UriClipAsset
corresponding to a high resolution
media file with the asset of a lower resolution stand in.
An asset may even have several proxies, the first of which will act as
its default and be returned on requests, but the others will be ordered
to take its place once it is removed. You can add a proxy to an asset,
or set its default, using AssetExt::set_proxy()
, and you can remove
them with AssetExt::unproxy()
.
Implements
Implementations
sourceimpl Asset
impl Asset
pub const NONE: Option<&'static Asset> = None
sourcepub fn needs_reload(extractable_type: Type, id: Option<&str>) -> bool
pub fn needs_reload(extractable_type: Type, id: Option<&str>) -> bool
Indicate that an existing Asset
in the cache should be reloaded
upon the next request. This can be used when some condition has
changed, which may require that an existing asset should be updated.
For example, if an external resource has changed or now become
available.
Note, the asset is not immediately changed, but will only actually
reload on the next call to request()
or
request_async()
.
extractable_type
The property::Asset::extractable-type
of the asset that
needs reloading
id
The property::Asset::id
of the asset asset that needs
reloading
Returns
true
if the specified asset exists in the cache and could be
marked for reloading.
sourcepub fn request(
extractable_type: Type,
id: Option<&str>
) -> Result<Option<Asset>, Error>
pub fn request(
extractable_type: Type,
id: Option<&str>
) -> Result<Option<Asset>, Error>
Returns an asset with the given properties. If such an asset already exists in the cache (it has been previously created in GES), then a reference to the existing asset is returned. Otherwise, a newly created asset is returned, and also added to the cache.
If the requested asset has been loaded with an error, then error
is
set, if given, and None
will be returned instead.
Note that the given id
may not be exactly the property::Asset::id
that is
set on the returned asset. For instance, it may be adjusted into a
standard format. Or, if a Extractable
type does not have its
extraction parametrised, as is the case by default, then the given id
may be ignored entirely and the property::Asset::id
set to some standard, in
which case a None
id
can be given.
Similarly, the given extractable_type
may not be exactly the
property::Asset::extractable-type
that is set on the returned asset. Instead,
the actual extractable type may correspond to a subclass of the given
extractable_type
, depending on the given id
.
Moreover, depending on the given extractable_type
, the returned asset
may belong to a subclass of Asset
.
Finally, if the requested asset has a property::Asset::proxy
, then the proxy
that is found at the end of the chain of proxies is returned (a proxy’s
proxy will take its place, and so on, unless it has no proxy).
Some asset subclasses only support asynchronous construction of its
assets, such as UriClip
. For such assets this method will fail, and
you should use request_async()
instead. In the case of
UriClip
, you can use UriClipAsset::request_sync()
if you only
want to wait for the request to finish.
extractable_type
The property::Asset::extractable-type
of the asset
id
The property::Asset::id
of the asset
Returns
A reference to the requested
asset, or None
if an error occurred.
sourcepub fn request_async<P: FnOnce(Result<Asset, Error>) + 'static>(
extractable_type: Type,
id: Option<&str>,
cancellable: Option<&impl IsA<Cancellable>>,
callback: P
)
pub fn request_async<P: FnOnce(Result<Asset, Error>) + 'static>(
extractable_type: Type,
id: Option<&str>,
cancellable: Option<&impl IsA<Cancellable>>,
callback: P
)
Requests an asset with the given properties asynchronously (see
request()
). When the asset has been initialized or fetched
from the cache, the given callback function will be called. The
asset can then be retrieved in the callback using the
ges_asset_request_finish()
method on the given GAsyncResult
.
Note that the source object passed to the callback will be the
Asset
corresponding to the request, but it may not have loaded
correctly and therefore can not be used as is. Instead,
ges_asset_request_finish()
should be used to fetch a usable asset, or
indicate that an error occurred in the asset’s creation.
Note that the callback will be called in the GMainLoop
running under
the same GMainContext
that ges_init()
was called in. So, if you wish
the callback to be invoked outside the default GMainContext
, you can
call g_main_context_push_thread_default()
in a new thread before
calling ges_init()
.
Example of an asynchronous asset request: ⚠️ The following code is in c ⚠️
// The request callback
static void
asset_loaded_cb (GESAsset * source, GAsyncResult * res, gpointer user_data)
{
GESAsset *asset;
GError *error = NULL;
asset = ges_asset_request_finish (res, &error);
if (asset) {
gst_print ("The file: %s is usable as a GESUriClip",
ges_asset_get_id (asset));
} else {
gst_print ("The file: %s is *not* usable as a GESUriClip because: %s",
ges_asset_get_id (source), error->message);
}
gst_object_unref (asset);
}
// The request:
ges_asset_request_async (GES_TYPE_URI_CLIP, some_uri, NULL,
(GAsyncReadyCallback) asset_loaded_cb, user_data);
extractable_type
The property::Asset::extractable-type
of the asset
id
The property::Asset::id
of the asset
cancellable
An object to allow cancellation of the
asset request, or None
to ignore
callback
A function to call when the initialization is finished
pub fn request_future(
extractable_type: Type,
id: Option<&str>
) -> Pin<Box_<dyn Future<Output = Result<Asset, Error>> + 'static>>
Trait Implementations
sourceimpl Ord for Asset
impl Ord for Asset
1.21.0 · sourcefn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
1.21.0 · sourcefn min(self, other: Self) -> Selfwhere
Self: Sized,
fn min(self, other: Self) -> Selfwhere
Self: Sized,
1.50.0 · sourcefn clamp(self, min: Self, max: Self) -> Selfwhere
Self: Sized + PartialOrd<Self>,
fn clamp(self, min: Self, max: Self) -> Selfwhere
Self: Sized + PartialOrd<Self>,
sourceimpl ParentClassIs for Asset
impl ParentClassIs for Asset
sourceimpl<OT: ObjectType> PartialOrd<OT> for Asset
impl<OT: ObjectType> PartialOrd<OT> for Asset
sourcefn partial_cmp(&self, other: &OT) -> Option<Ordering>
fn partial_cmp(&self, other: &OT) -> Option<Ordering>
1.0.0 · sourcefn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresourceimpl StaticType for Asset
impl StaticType for Asset
sourcefn static_type() -> Type
fn static_type() -> Type
Self
.impl Eq for Asset
impl IsA<Asset> for ClipAsset
impl IsA<Asset> for EffectAsset
impl IsA<Asset> for Project
impl IsA<Asset> for SourceClipAsset
v1_18
only.impl IsA<Asset> for TrackElementAsset
impl IsA<Asset> for UriClipAsset
impl IsA<Asset> for UriSourceAsset
impl IsA<MetaContainer> for Asset
Auto Trait Implementations
impl RefUnwindSafe for Asset
impl !Send for Asset
impl !Sync for Asset
impl Unpin for Asset
impl UnwindSafe for Asset
Blanket Implementations
sourceimpl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
sourceimpl<T> Cast for Twhere
T: ObjectType,
impl<T> Cast for Twhere
T: ObjectType,
sourcefn upcast<T>(self) -> Twhere
T: ObjectType,
Self: IsA<T>,
fn upcast<T>(self) -> Twhere
T: ObjectType,
Self: IsA<T>,
T
. Read moresourcefn upcast_ref<T>(&self) -> &Twhere
T: ObjectType,
Self: IsA<T>,
fn upcast_ref<T>(&self) -> &Twhere
T: ObjectType,
Self: IsA<T>,
T
. Read moresourcefn downcast<T>(self) -> Result<T, Self>where
T: ObjectType,
Self: CanDowncast<T>,
fn downcast<T>(self) -> Result<T, Self>where
T: ObjectType,
Self: CanDowncast<T>,
T
. Read moresourcefn downcast_ref<T>(&self) -> Option<&T>where
T: ObjectType,
Self: CanDowncast<T>,
fn downcast_ref<T>(&self) -> Option<&T>where
T: ObjectType,
Self: CanDowncast<T>,
T
. Read moresourcefn dynamic_cast<T>(self) -> Result<T, Self>where
T: ObjectType,
fn dynamic_cast<T>(self) -> Result<T, Self>where
T: ObjectType,
T
. This handles upcasting, downcasting
and casting between interface and interface implementors. All checks are performed at
runtime, while downcast
and upcast
will do many checks at compile-time already. Read moresourcefn dynamic_cast_ref<T>(&self) -> Option<&T>where
T: ObjectType,
fn dynamic_cast_ref<T>(&self) -> Option<&T>where
T: ObjectType,
T
. This handles upcasting, downcasting
and casting between interface and interface implementors. All checks are performed at
runtime, while downcast
and upcast
will do many checks at compile-time already. Read moresourceunsafe fn unsafe_cast<T>(self) -> Twhere
T: ObjectType,
unsafe fn unsafe_cast<T>(self) -> Twhere
T: ObjectType,
T
unconditionally. Read moresourceunsafe fn unsafe_cast_ref<T>(&self) -> &Twhere
T: ObjectType,
unsafe fn unsafe_cast_ref<T>(&self) -> &Twhere
T: ObjectType,
&T
unconditionally. Read moresourceimpl<O> GObjectExtManualGst for Owhere
O: IsA<Object>,
impl<O> GObjectExtManualGst for Owhere
O: IsA<Object>,
fn set_property_from_str(&self, name: &str, value: &str)
sourceimpl<U> IsSubclassableExt for Uwhere
U: IsClass + ParentClassIs,
impl<U> IsSubclassableExt for Uwhere
U: IsClass + ParentClassIs,
fn parent_class_init<T>(class: &mut Class<U>)where
T: ObjectSubclass,
<U as ParentClassIs>::Parent: IsSubclassable<T>,
fn parent_instance_init<T>(instance: &mut InitializingObject<T>)where
T: ObjectSubclass,
<U as ParentClassIs>::Parent: IsSubclassable<T>,
sourceimpl<T> ObjectExt for Twhere
T: ObjectType,
impl<T> ObjectExt for Twhere
T: ObjectType,
sourcefn is<U>(&self) -> boolwhere
U: StaticType,
fn is<U>(&self) -> boolwhere
U: StaticType,
true
if the object is an instance of (can be cast to) T
.sourcefn object_class(&self) -> &Class<Object>
fn object_class(&self) -> &Class<Object>
ObjectClass
of the object. Read moresourcefn class_of<U>(&self) -> Option<&Class<U>>where
U: IsClass,
fn class_of<U>(&self) -> Option<&Class<U>>where
U: IsClass,
T
. Read moresourcefn interface<U>(&self) -> Option<InterfaceRef<'_, U>>where
U: IsInterface,
fn interface<U>(&self) -> Option<InterfaceRef<'_, U>>where
U: IsInterface,
T
of the object. Read moresourcefn set_property<V>(&self, property_name: &str, value: V)where
V: ToValue,
fn set_property<V>(&self, property_name: &str, value: V)where
V: ToValue,
sourcefn set_property_from_value(&self, property_name: &str, value: &Value)
fn set_property_from_value(&self, property_name: &str, value: &Value)
sourcefn set_properties(&self, property_values: &[(&str, &dyn ToValue)])
fn set_properties(&self, property_values: &[(&str, &dyn ToValue)])
sourcefn set_properties_from_value(&self, property_values: &[(&str, Value)])
fn set_properties_from_value(&self, property_values: &[(&str, Value)])
sourcefn property<V>(&self, property_name: &str) -> Vwhere
V: 'static + for<'b> FromValue<'b>,
fn property<V>(&self, property_name: &str) -> Vwhere
V: 'static + for<'b> FromValue<'b>,
property_name
of the object and cast it to the type V. Read moresourcefn property_value(&self, property_name: &str) -> Value
fn property_value(&self, property_name: &str) -> Value
property_name
of the object. Read moresourcefn property_type(&self, property_name: &str) -> Option<Type>
fn property_type(&self, property_name: &str) -> Option<Type>
property_name
of this object. Read moresourcefn find_property(&self, property_name: &str) -> Option<ParamSpec>
fn find_property(&self, property_name: &str) -> Option<ParamSpec>
ParamSpec
of the property property_name
of this object.sourcefn list_properties(&self) -> PtrSlice<ParamSpec>
fn list_properties(&self) -> PtrSlice<ParamSpec>
ParamSpec
of the properties of this object.sourcefn freeze_notify(&self) -> PropertyNotificationFreezeGuard
fn freeze_notify(&self) -> PropertyNotificationFreezeGuard
sourceunsafe fn set_qdata<QD>(&self, key: Quark, value: QD)where
QD: 'static,
unsafe fn set_qdata<QD>(&self, key: Quark, value: QD)where
QD: 'static,
key
. Read moresourceunsafe fn qdata<QD>(&self, key: Quark) -> Option<NonNull<QD>>where
QD: 'static,
unsafe fn qdata<QD>(&self, key: Quark) -> Option<NonNull<QD>>where
QD: 'static,
key
. Read moresourceunsafe fn steal_qdata<QD>(&self, key: Quark) -> Option<QD>where
QD: 'static,
unsafe fn steal_qdata<QD>(&self, key: Quark) -> Option<QD>where
QD: 'static,
key
. Read moresourceunsafe fn set_data<QD>(&self, key: &str, value: QD)where
QD: 'static,
unsafe fn set_data<QD>(&self, key: &str, value: QD)where
QD: 'static,
key
. Read moresourceunsafe fn data<QD>(&self, key: &str) -> Option<NonNull<QD>>where
QD: 'static,
unsafe fn data<QD>(&self, key: &str) -> Option<NonNull<QD>>where
QD: 'static,
key
. Read moresourceunsafe fn steal_data<QD>(&self, key: &str) -> Option<QD>where
QD: 'static,
unsafe fn steal_data<QD>(&self, key: &str) -> Option<QD>where
QD: 'static,
key
. Read moresourcefn block_signal(&self, handler_id: &SignalHandlerId)
fn block_signal(&self, handler_id: &SignalHandlerId)
sourcefn unblock_signal(&self, handler_id: &SignalHandlerId)
fn unblock_signal(&self, handler_id: &SignalHandlerId)
sourcefn stop_signal_emission(&self, signal_id: SignalId, detail: Option<Quark>)
fn stop_signal_emission(&self, signal_id: SignalId, detail: Option<Quark>)
sourcefn stop_signal_emission_by_name(&self, signal_name: &str)
fn stop_signal_emission_by_name(&self, signal_name: &str)
sourcefn connect<F>(
&self,
signal_name: &str,
after: bool,
callback: F
) -> SignalHandlerIdwhere
F: 'static + Fn(&[Value]) -> Option<Value> + Send + Sync,
fn connect<F>(
&self,
signal_name: &str,
after: bool,
callback: F
) -> SignalHandlerIdwhere
F: 'static + Fn(&[Value]) -> Option<Value> + Send + Sync,
signal_name
on this object. Read moresourcefn connect_id<F>(
&self,
signal_id: SignalId,
details: Option<Quark>,
after: bool,
callback: F
) -> SignalHandlerIdwhere
F: 'static + Fn(&[Value]) -> Option<Value> + Send + Sync,
fn connect_id<F>(
&self,
signal_id: SignalId,
details: Option<Quark>,
after: bool,
callback: F
) -> SignalHandlerIdwhere
F: 'static + Fn(&[Value]) -> Option<Value> + Send + Sync,
signal_id
on this object. Read moresourcefn connect_local<F>(
&self,
signal_name: &str,
after: bool,
callback: F
) -> SignalHandlerIdwhere
F: 'static + Fn(&[Value]) -> Option<Value>,
fn connect_local<F>(
&self,
signal_name: &str,
after: bool,
callback: F
) -> SignalHandlerIdwhere
F: 'static + Fn(&[Value]) -> Option<Value>,
signal_name
on this object. Read moresourcefn connect_local_id<F>(
&self,
signal_id: SignalId,
details: Option<Quark>,
after: bool,
callback: F
) -> SignalHandlerIdwhere
F: 'static + Fn(&[Value]) -> Option<Value>,
fn connect_local_id<F>(
&self,
signal_id: SignalId,
details: Option<Quark>,
after: bool,
callback: F
) -> SignalHandlerIdwhere
F: 'static + Fn(&[Value]) -> Option<Value>,
signal_id
on this object. Read moresourceunsafe fn connect_unsafe<F>(
&self,
signal_name: &str,
after: bool,
callback: F
) -> SignalHandlerIdwhere
F: Fn(&[Value]) -> Option<Value>,
unsafe fn connect_unsafe<F>(
&self,
signal_name: &str,
after: bool,
callback: F
) -> SignalHandlerIdwhere
F: Fn(&[Value]) -> Option<Value>,
signal_name
on this object. Read moresourceunsafe fn connect_unsafe_id<F>(
&self,
signal_id: SignalId,
details: Option<Quark>,
after: bool,
callback: F
) -> SignalHandlerIdwhere
F: Fn(&[Value]) -> Option<Value>,
unsafe fn connect_unsafe_id<F>(
&self,
signal_id: SignalId,
details: Option<Quark>,
after: bool,
callback: F
) -> SignalHandlerIdwhere
F: Fn(&[Value]) -> Option<Value>,
signal_id
on this object. Read moresourcefn connect_closure(
&self,
signal_name: &str,
after: bool,
closure: RustClosure
) -> SignalHandlerId
fn connect_closure(
&self,
signal_name: &str,
after: bool,
closure: RustClosure
) -> SignalHandlerId
signal_name
on this object. Read moresourcefn connect_closure_id(
&self,
signal_id: SignalId,
details: Option<Quark>,
after: bool,
closure: RustClosure
) -> SignalHandlerId
fn connect_closure_id(
&self,
signal_id: SignalId,
details: Option<Quark>,
after: bool,
closure: RustClosure
) -> SignalHandlerId
signal_id
on this object. Read moresourcefn watch_closure(&self, closure: &impl AsRef<Closure>)
fn watch_closure(&self, closure: &impl AsRef<Closure>)
closure
to the lifetime of the object. When
the object’s reference count drops to zero, the closure will be
invalidated. An invalidated closure will ignore any calls to
invoke_with_values
, or
invoke
when using Rust closures. Read moresourcefn emit<R>(&self, signal_id: SignalId, args: &[&dyn ToValue]) -> Rwhere
R: TryFromClosureReturnValue,
fn emit<R>(&self, signal_id: SignalId, args: &[&dyn ToValue]) -> Rwhere
R: TryFromClosureReturnValue,
sourcefn emit_with_values(&self, signal_id: SignalId, args: &[Value]) -> Option<Value>
fn emit_with_values(&self, signal_id: SignalId, args: &[Value]) -> Option<Value>
Self::emit
but takes Value
for the arguments.sourcefn emit_by_name<R>(&self, signal_name: &str, args: &[&dyn ToValue]) -> Rwhere
R: TryFromClosureReturnValue,
fn emit_by_name<R>(&self, signal_name: &str, args: &[&dyn ToValue]) -> Rwhere
R: TryFromClosureReturnValue,
sourcefn emit_by_name_with_values(
&self,
signal_name: &str,
args: &[Value]
) -> Option<Value>
fn emit_by_name_with_values(
&self,
signal_name: &str,
args: &[Value]
) -> Option<Value>
sourcefn emit_by_name_with_details<R>(
&self,
signal_name: &str,
details: Quark,
args: &[&dyn ToValue]
) -> Rwhere
R: TryFromClosureReturnValue,
fn emit_by_name_with_details<R>(
&self,
signal_name: &str,
details: Quark,
args: &[&dyn ToValue]
) -> Rwhere
R: TryFromClosureReturnValue,
sourcefn emit_by_name_with_details_and_values(
&self,
signal_name: &str,
details: Quark,
args: &[Value]
) -> Option<Value>
fn emit_by_name_with_details_and_values(
&self,
signal_name: &str,
details: Quark,
args: &[Value]
) -> Option<Value>
sourcefn emit_with_details<R>(
&self,
signal_id: SignalId,
details: Quark,
args: &[&dyn ToValue]
) -> Rwhere
R: TryFromClosureReturnValue,
fn emit_with_details<R>(
&self,
signal_id: SignalId,
details: Quark,
args: &[&dyn ToValue]
) -> Rwhere
R: TryFromClosureReturnValue,
sourcefn emit_with_details_and_values(
&self,
signal_id: SignalId,
details: Quark,
args: &[Value]
) -> Option<Value>
fn emit_with_details_and_values(
&self,
signal_id: SignalId,
details: Quark,
args: &[Value]
) -> Option<Value>
sourcefn disconnect(&self, handler_id: SignalHandlerId)
fn disconnect(&self, handler_id: SignalHandlerId)
sourcefn connect_notify<F>(&self, name: Option<&str>, f: F) -> SignalHandlerIdwhere
F: 'static + Fn(&T, &ParamSpec) + Send + Sync,
fn connect_notify<F>(&self, name: Option<&str>, f: F) -> SignalHandlerIdwhere
F: 'static + Fn(&T, &ParamSpec) + Send + Sync,
notify
signal of the object. Read moresourcefn connect_notify_local<F>(&self, name: Option<&str>, f: F) -> SignalHandlerIdwhere
F: 'static + Fn(&T, &ParamSpec),
fn connect_notify_local<F>(&self, name: Option<&str>, f: F) -> SignalHandlerIdwhere
F: 'static + Fn(&T, &ParamSpec),
notify
signal of the object. Read moresourceunsafe fn connect_notify_unsafe<F>(
&self,
name: Option<&str>,
f: F
) -> SignalHandlerIdwhere
F: Fn(&T, &ParamSpec),
unsafe fn connect_notify_unsafe<F>(
&self,
name: Option<&str>,
f: F
) -> SignalHandlerIdwhere
F: Fn(&T, &ParamSpec),
notify
signal of the object. Read more